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The asymptotic dependence of the wave resistance of bodies moving horizontally at a high speed in a 

wavcguide with an arbitrary stratified fluid is analyscd. For a waveguidc of finite depth, it is estahlishcd that 

the resistance is inversely proportional to the square of the velocity and directly proportional to the square 

of the volume. for small bodies. The general results are refined for uniform stratification and a pronounced 

transition layer. 

WHEN bodies move in a density-stratified fluid internal waves are excited and perturbations 
propagate inside the fluid. By virtue of this fact, even if viscous resistance is neglected (in the 
ideal-fluid approximation) the body will experience wave resistance. It is convenient, when 
calculating this, to replace the boundary-value problem of the flow around the body by the problem 
of the motion of mass or force sources, which are equivalent to the body in their hydrodynamic 
effect on the fluid. These might be mass dipole sources, distributed over the surface of the 

submerged body and found from the solution of the boundary integral equations, for example. The 
use of model distributions of sources is especially helpful because it enables a number of general 
conclusions to be drawn without having to solve the quite time-consuming problem of the specific 
form of the source distributions. 
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Fast asymptotic form of the resistance of bodies in fluids 223 

The asymptotic character of the dependence of wave resistance on the velocity of rapidly moving 
bodies can be established for a fairly arbitrary stratified liquid, without going into much detail on the 
equivalent source distributions. Only the most general assumptions need to be made concerning the 
latter: there is total compensation of sources and sinks in the direction of motion, the characteristic 
scales of the bodies and corresponding source distributions are comparable, and the bodies are small 
compared with the depth of the waveguide. 

1. THE WAVE RESISTANCE FOR A HORIZONTAL WAVEGUiDE WITH ARBITRARY 

STRATIFICATION 

In the linear approximation, small perturbations of the hydrodynamic characteristics from 
uniformly horizontally moving mass sources m (r-vat, z), to which we shall confine ourselves 
below, are proportional to those sources. From the equations of the mass and momentum balance of 
a non-uniform. density-stratified fluid situated in a gravity field, for the vertical component of the 
perturbation velocity w it follows that 

Here, the conventional Boussinesq approximation has been used, according to which the 
influence of changes in density on the inertia is neglected, N(z) is the buoyancy frequency, the 
square of which is proportional to the initial density gradient, which depends only on the vertical 
coordinate z and r = (x, y) is the horizontal coordinate vector. 

It is convenient to represent the solution of this differential equation as a Fourier integral 
expansion with respect to the horizontal variables and time, and a series in the complete system of 
eigenfunctions which depend on the vertical coordinate. 

Here k = (k,, A+) is the wave vector, k = /k 1 and m(k, z) is the Fourier component of mass 
source m (r - v(,t, z). The appearance of the delta-function 6 ( o - kvo) in the expansion is due to the 
dependence of the latter on the difference argument r-vat. The notation +ie indicates a small shift 
of the poles from the real frequency axis. 

A spatially non-uniform stratification (along the vertical) has waveguide properties. The 
corresponding eigenfunctions w,, (k, z) and eigenvalues c,, = c,,(k) are determined by the solution of 
the spectral problem 

(~2/~~zL-k2+~,,-‘~2(z))~,,=0, Wn~l,,h,=w~l,*,=O (1.2) 

The wave mode spectrum is discrete if the waveguide is formed by rigid horizontal boundaries 
situated at finite depths z = hi and z = h2, or by a stratification that disappears at great depths 
(N’--+O as z-+hl.Z= rtm) in the case of an infinite fluid [l]. Only cases of this kind will be 
considered below. 

Perturbations of the pressure p can be expressed in terms of the vertical velocity component and 
written in a form similar to (1.1) 

(1.3) 
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In the linear problem energy characteristics, like the wave resistance, which are quadratic with 
respect to perturbations, become quadratic forms of the source distributions. For a uniformly 
moving distribution of mass sources, taking (1.1) and (1.3) into account. the wave resistance R can 
be represented by the following sum of the contributions of the individual wave modes [2]: 

R:-+~d’r~dqm=~R,, 

111 n 

- r’; 2,~‘) m (c, 2) m(r’, 2’) (1.4) 

Here 8(vo - c,,) is the Heaviside unit function. 
The important properties of the spectral problem for internal waves (1.2) are the monotonic 

decrease in the phase velocities of the waves c,,(k) as the wave number k and mode number PI 
increase, the limitation on the possible frequencies w,~ (k) = kc,?(k) d N,,, and the boundedness of 
the phase velocities of all waves in the special case of a waveguide of finite depth [l, 21. Thanks to 
these properties, the general expression for the contribution of the nth mode to the wave resistance 
R,, is easily simplified for high source velocities. 

For velocities of the modelled body exceeding the phase velocities of waves of the given mode 

vo > c,o = limk_or,(k)Zc,(k) (which is always possible in a waveguide of finite depth), the 
Heaviside function does not place any restrictions on the range of integration with respect to the 
wave numbers and can be omitted. For even higher velocities (v~~*c~~~~) I/(v,:-c,,,:) can be 
replaced by I+). 

When replacing the body by mass sources, it is natural to require total compensation of all sources 
and sinks. We shall assume that this applies in the direction of motion (assuming that the body has a 
certain symmetry), which we shall take to coincide with the direction of the x axis 

S dxm (r, 2) = 0, I) = !dzD(z) =I jdz ~d’fm2(r,z)#O (1.5) 

)I‘ 1,s 

Then S, ]X=x. is not reflected in the value of the resistance according to (1.4) and instead of 
cos(kc, (x --x’)/vo) we can put cos(kc, (x - x’)/v,~) - 1. Assuming, in addition to v~~~c,,~~, that the 
body is relatively small (ZX @ vtrlN,,, , y I +h, -h, ), the expression for the contribution of the nth 
mode to the wave resistance can be simplified even more: 

Rn=&zS d=rdz’A, (z, z’) D(z) D (2’) 
0 1,. 

A ,, ,N i dkkQns 
aw, (k, z) aw, (k, z’) 

b 

az 
&ii’ 

(1.6) 

The function A,(z, z’) is determined exclusively by the stratification and the type of waveguide, 
rather than the parameters (and the velocity, in particular) of the sources. Apart from the multiplier 
vo-- 4, the value of the contribution to the resistance R, may depend implicitly on the velocity in 
terms of the vertical density of dipole moments D(z). However, at high velocities, in the framework 
of the linear description of small perturbations, we would expect this dependence to be similar to a 
linear dependence D(z)=voA(z), which applies to a uniform fluid. Finally, the asymptotic 
dependence of the contribution to the wave resistance of the nth mode on the velocity turns out to 
be a decreasing power function: 

H, - vo-=, vo”C,o, N,J (1.7) 
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For a waveguide of finite depth, the velocities of all internal waves are finite, so that 
v~~~clo~c,(k), and for all modes the estimate (1.7) can be used. So, for the total wave resistance, 
assuming that the series can be summed over the modes, we have the asymptotic estimate 

RmPZ, F=vo/ (N,,,l) >> 1 (1.8) 

It is a different situation in the case of a fluid which is infinite in a vertical direction. Apart from 
wave modes (n > 1) with limited wave velocities, there is a lowest “zero” mode, for which the 
eigenvalue increases without limit as the wave number decreases (11 

P(+ =J)-Pr,--) C”2wIk+o=-~+w)l Y= p(+“)+p(__) (1.9 

Thus, estimates (1.6) and (1.7) can only be used for higher modes with n 2 1. For the zero mode, 
the inequality uobco(k) cannot be satisfied for all wave numbers and the range of integration in 
(1.4) with respect to the wave numbers for the contribution to the wave resistance of the zero mode 
will always depend on the value of the velocity. Thus, the resulting asymptotic dependence on the 
velocity will be more complicated. The only simplifications in general form that can be made of the 
contribution of the zero mode are not very significant: 

ht 

R0=&S dzdz'A,(z,z') D(z)D(z’) 
0 

'I (1.10) 

Below, we refine the general argument for the specific case of a uniform stratification, and a 
stratification with a sharp maximum of the buoyancy frequency. 

2. A UNIFORMLY STRATIFIED FLUID IN A WAVEGUIDE OF FINITE DEPTH 

In the case of a uniformly stratified layer of fluid (with constant buoyancy frequency N) of depth 
h, enclosed between rigid boundaries z = -h, = 0 and z = h2 = h, the spectral problem (1.2) has the 
simple solution 

2=_ N2h2 2h nnz 

CII k2h2 + n2n2 ' wn a = N2k'h2 
sin2-, n=1,2,... 

h 

Here the simple conditions cn2 < c,() 2 = N2h2/(r2n2) apply to the velocities of all internal waves. It 
becomes clear that the condition of large velocities vo~cc,o implies a large value for the Froude 
number of the waveguide vol(Nh). For relatively small bodies (feh) this is even more so for the 
Froude number F= v~~I(NI)P 1, and formula (1.6) simplifies to the form 

(2.1) 

Assuming that the vertical dimensions of the body are so small that l,+ h/n, and the horizontal of 
its motion z. is far from the horizontal of the extremum of the eigenfunction (cos (n_q,nlh) - l), we 
obtain an even simpler estimate of the contribution of the nth mode to the wave resistance, namely, 

(2.2) 

Thus, the generation of the lowest wave modes at high velocities has a simple dipole character, 
except for “extremal” horizontals. In the case of a point dipole, this result is obtained with the sole 
condition v(,S Nhln (without that condition, for a dipole, R, can be expressed in terms of elliptic 
integrals). 
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If the horizontal of the body coincides with that of the extremum 
follows from (2.1) that the large-velocity contribution of the latter to 

determined by a certain quadrupole moment of the source distribution 

of the waveguide mode, it 
the wave resistance will be 

The contributions of all the modes can be summed using the approximate formula (2.1). For large 
velocities (v,,~c,,, = Nhln) and relatively small bodies (/e h) the total wave resistance is 

I’, 

R,zAE- [ dz dt’D(z) D (3’) In 
h 

32nv,” 
i, 

2n (2 - 2’) sin (nz,,/h) 

It is clear from this, in particular, that the sum of the resistances over all modes is logarithmically 
large for modelling sources localized along the vertical. The reason for this lies in the overstatement 

of the role of the highest modes when bodies are modelled in this way. The formula obtained as a 
result also supports the general asymptotic estimate (1.8). 

3. TRANSITION ZONE OF DENSITY C‘HANCJE 

In an infinite fluid, if the stratification maximum N(Z) = N,,,(chzlh)-’ is pronounced, the 
eigenvalues have the simple form 

C” 
N”,‘h2 

2 =’ -@l + n) (kh .-I- n + 1) ’ 
n-0,1 9 ,a,. . . (3.1) 

and the normalized eigenfunctions can be expressed in terms of a polynomial-type hypergeometric 

function, i.e. Jacobi polynomials I’,,‘“.“‘(<): 

w, (k, z) E c, ich +j-““ p:” W (th _;j 

C ~ := (2n + 1 + 2&S_) r (n + 1) r (n + i + 2kh) 
,I 2k2h.V,24k r2 (n. + 1 + kh) 

(3.2) 

Owing to the lack of any strong restrictions along the vertical in this example. the long internal 
waves of the zero mode can be as fast as desired: 

2_ 
A;‘,,% 

C” ---, 
k(1 +kh) wo5-= 

J 2/C (2 + 2kk) 1’1 
2khN,,2”“r (i .+ kh.) c I 

‘ch _!_\-h’h 
h 

and so the need for the inequality v,, , ‘c’,,(k) to be satisfied [see (I .4)j has excluded the generation of 

long internal waves of the zero mode with wave numbers which do not satisfy the inequality 

kh. (i-t-kh) ~A’,,,%*/v,, (3.3) 

However, at high velocities (v,,‘%N,,,‘h’) of a much more deeply submerged body (z,,%h, I;), the 
major contribution to the integral for SC, is given by finite. but small wave numbers (kh < 1). For 
small bodies (f, , f,.2zo-’ G vo’l(N2h)) this gives the simpler results 

R w (\ * dzD (z) e-pZ)2, 
N,,,2h 

O = (32qlZJ’~ . 
p 55 A 

$2 

R 
_ pL)“N,,‘h”t 

-t!xp 
O - voi (32n20)3* 

N*,2hz, 
1’02 

(3.4) 

(3.5) 

the one transforming to the other for I,< CL- ‘. The fact that the asymptotic dependence on velocity 
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here is exponential is due to the aforementioned restriction on the wave numbers of generated 
waves (3.3). 

For sufficiently high velocities (v,)~~>c,~~ 2 = N m *h*/2) there will be no restrictions on the wave 
numbers of the generation of the remaining modes. It is then easy to establish asymptotic 
dependences on the velocity of the type (1.6) and (1.7). On the assumption that the body is 
deep-submerged and has small sizes (I,5 vo/N, , ,, E -@zo) the dependences on the other parameters 
are also easy to estimate (because infinitely small wave numbers make a decisive contribution) 

R 
3pNtP j 

( 
N,,12h= -?a --- - n - 64nv,* n(n + f)c,? (3.6) 

Here, unlike the previous case, the decrease with depth is of power-function form. The 
contributions of the highest modes to the wave resistance decrease more rapidly as the mode 
number increases than in the case of uniform stratification. 

As the thickness of the transition stratified layer decreases (h-O), provided that the overall 
density gradient is preserved (N,,*k = yg = const), the density gradient increases and the contribu- 
tions of all, apart from the zero mode, decrease rapidly (I?,, - h”). 

We will now consider a limiting case. 

4. THE INTERFACE BETWEEN FLUIDS WITH DIFFERENT DENSITIES 

In the case of degenerate stratification with one surface of density change z = 0 separating two 
uniform fluids with densities p (f 0) and p(- m), only a surface zero mode with phase wave 
velocities c = (‘ygfk)u2 is possible [compare with (1.9)]. 

The formula for the wave resistance of the distribution of sources moving below [plus sign and 
p = p(+m)] or above [minus sign and p = p(--oo)] the surface of the discontinuity can then be 
written in the general form [Z] 

r-r’; 2,~‘) m (r, 2) m (r’, 2’) 

P(l$_Y)v2 m 
~(r;z,0)=-2~~d~Ch2~exp(-v~z~~h”~) x 

x cos (v;d ch ;) cos (vy sh v, ch cy) 

For relatively small source distributions of dipole type (1 S) which are far from the surface of the 
density discontinuity (I+ v-’ = v,,‘l(yg) e /z. I), we obtain the fast asymptotic form 

Rxp(l~r)v’(32nvlzol)-“J exp(-2vfz,[) 

which approaches (3.5) as p + v, y4 1, that is, in the limit of a weak density discontinuity h-+0, 
N,,i,,,2h = yg = const (limiting transition with fixed density gradient). 

An asymptotic simpljficatjon of the formula for the resistance of a body which lies deep below the 
discontinuity layer (~gzo~vvi,z) can be made by using a less rigorous condition on its size. If it is 
assumed that yg/ c; vCjz, then the results will be slightly more complicated, owing to some allowance 
being made for interference between waves generated from different parts of the body. For a 
symmetrical extended body we have 

R=zp (1 -t-y) v2 (32nvzo)-‘“W exp ( -2vzO) 

M = \ d2r dzm (r, z) sin (VZ) exp (-v (z - z,l) 
f 

The situation changes fundamentally when allowance is made for at least one boundary situated 
at a finite depth. The phase velocities of waves even of the zero mode then become bounded (the 
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maximum velocity is proportional to the square root of the depth). For example, for a two-layer 
fluid with a rigid lid above (Z = -N) or below (z = +H), this is evident from the formula 

c’=ygk-‘(I-exp(--2kH))/(iTy exp(-2ktl)) 

Ultimately, the need for special consideration of the zero mode can be dispensed with and the fast 
asymptotic form of the contributions to the resistance of all modes can be found in the same way. 

S. CONCLUSION 

Thus, without solving the problem of flow around specific bodies of a stratified liquid at high 
velocities (large Froude numbers), we have managed fairly easily to find the asymptotic form of the 
dependence of the wave resistance on the velocity (the dependence of a quadratic functional of the 
solution on the parameter). 

At a finite depth in the fluid, the contribution of each mode to the resistance falls off quadratically 
as the velocity increases (R,- u~~-~) at high velocities, and this is true for any stratification. 
However, the way in which this contribution decreases as the mode number increases is sensitive to 
the type of stratification and the relative dimensions of the body. 

For a uniformly stratified liquid in a waveguide of finite depth and for source distributions which 
are localized in a vertical direction, the decrease in the contributions as the mode number increases 
is so slow (I?,, - n- ’ ) that the total resistance becomes anomalously large (the series in the modes is 
logarithmically divergent). This corresponds directly to the infinite wave resistance of vertically 
localized sources moving in an infinite uniformly stratified fluid f3]. In both cases, the paradox 
indicates that the contribution of transverse waves is exaggerated in the modelling of three- 
dimensional bodies by localized sources. 

The dependence on the mode number becomes stronger when the stratification is less uniform. 
From the arguments given above, it is clear that when a small body is a long way from the range of 
maximum stratification, the contributions of the highest modes of the wave resistance turn out to be 
negligibly small for any sources [see (3.6)]. 

Finally, a feature of the fast asymptotic form that should be emphasized is that the wave 
resistance of small bodies depends only on a general parameter, such as the total dipole moment of 
the model sources, proportional to the volume of the body. The only exceptions are cases where the 
motion is at the levels of extrema of the eigenfunctions of the waveguide. 
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